Cubic equation

Solution of cubic equation using Vieta's formulae. Created by user request

Esta página existe graças aos esforços das seguintes pessoas:

Timur

Timur

Anton

Criado: 2011-06-17 22:23:12, Ultima atualização: 2021-02-26 14:04:31
Creative Commons Attribution/Share-Alike License 3.0 (Unported)

Este conteúdo é licenciado de acordo com a Licença Creative Commons de Atribuição/CompartilhaIgual 3.0 (Unported). Isso significa que você pode redistribuir ou modificar livremente este conteúdo sob as mesmas condições de licença e precisa atribuir ao autor original colocando um hyperlink para este trabalho no seu site. Além disto, favor não modificar qualquer referência ao trabalho original (caso houver) que estiverem contidas neste conteúdo.

The canonical form of cubic equation is
ax^3+bx^2+cx+d=0

Vieta's formulae are used to solve equations as
x^3+ax^2+bx+c=0
thus, first step is to divide all coefficients by "a".

Here is the calculator. Description of calculation using Vieta's formulae are below

PLANETCALC, Cubic Equation

Cubic Equation

Digits after the decimal point: 2
x1
 
x2
 
x3
 
Q
 
R
 
S
 

The only place I was able to find Vieta's formulae tailored for cubic equations is here

First we calculate
Q=\frac{a^2-3b}{9}
R=\frac{2a^3-9ab+27c}{54}

Then
S=Q^3-R^2

If S > 0, then
\phi = \frac{1}{3}\arccos\left(\frac{R}{\sqrt{Q^3}}\right)
and we have three real roots:

x_1=-2\sqrt{Q}\cos(\phi)-\frac{a}{3}
x_2=-2\sqrt{Q}\cos\left(\phi+\frac{2}{3}\pi\right)-\frac{a}{3}
x_3=-2\sqrt{Q}\cos\left(\phi-\frac{2}{3}\pi\right)-\frac{a}{3}

If S < 0, trigonometric functions are replaced with hyperbolic. Depending on the sign of Q

Q > 0:
\phi = \frac{1}{3}\,\operatorname{Arch}\left(\frac{|R|}{\sqrt{Q^3}}\right)
x_1=-2sgn(R)\sqrt{Q}\,\operatorname{ch}(\phi)-\frac{a}{3}
(real root)
x_{2,3}=sgn(R)\sqrt{Q}\,\operatorname{ch}(\phi)-\frac{a}{3} \pm i \sqrt{3}\sqrt{Q}\,\operatorname{sh}(\phi)
(two complex roots)

Q < 0:

\phi = \frac{1}{3}\,\operatorname{Arsh}\left(\frac{|R|}{\sqrt{|Q|^3}}\right)
x_1=-2sgn(R)\sqrt{|Q|}\, \operatorname{sh}(\phi)-\frac{a}{3}
(real root)
x_{2,3}=sgn(R)\sqrt{|Q|}\, \operatorname{sh}(\phi)-\frac{a}{3} \pm i \sqrt{3} \sqrt{|Q|}\,\operatorname{ch}(\phi)
(two complex roots)

If S = 0, then it is singular equation and has only two roots:

x_1=-2sgn(R)\sqrt{Q}-\frac{a}{3}=-2\sqrt[3]{R}-\frac{a}{3}
x_2=sgn(R)\sqrt{Q}-\frac{a}{3}=\sqrt[3]{R}-\frac{a}{3}

URL copiado para a área de transferência
PLANETCALC, Cubic equation

Comentários