Student t-distribution

Calculates cumulative distribution function value and probability density function value for Student t-distribution. Quantile calculator evaluates Student quantiles for given probability and specified number of degrees of freedom.

Esta página existe graças aos esforços das seguintes pessoas:

Anton

Timur

Timur

Criado: 2015-11-29 06:40:48, Ultima atualização: 2021-03-03 07:43:57
Creative Commons Attribution/Share-Alike License 3.0 (Unported)

Este conteúdo é licenciado de acordo com a Licença Creative Commons de Atribuição/CompartilhaIgual 3.0 (Unported). Isso significa que você pode redistribuir ou modificar livremente este conteúdo sob as mesmas condições de licença e precisa atribuir ao autor original colocando um hyperlink para este trabalho no seu site. Além disto, favor não modificar qualquer referência ao trabalho original (caso houver) que estiverem contidas neste conteúdo.

Student t-distribution arises when estimating the mean of a normally distributed population in situations where the sample size is small, and population deviation is unknown. William Sealy Gosset developed the distribution at the beginning of the XX century, who published his works under the pseudonym Student.

Probability density function

Probability density function has the following form:
f(t) = \frac{\Gamma(\frac{n+1}{2})} {\sqrt{n\pi}\,\Gamma(\frac{n}{2})} \left(1+\frac{t^2}{n} \right)^{\!-\frac{n+1}{2}},\!
where n - is degrees of freedom and \Gamma - Gamma function

Cumulative distribution function

Cumulative distribution function can be expressed using Gamma and hypergeometric function:
\tfrac{1}{2} + t\frac{\Gamma \left( \tfrac{1}{2}(n+1) \right)} {\sqrt{\pi n}\,\Gamma \left(\tfrac{n}{2}\right)}  {}_2F_1 \left ( \tfrac{1}{2},\tfrac{1}{2}(n+1); \tfrac{3}{2};  -\tfrac{t^2}{n} \right)

PLANETCALC, Stdent t-distribution

Stdent t-distribution

Digits after the decimal point: 5
Probability density function value
 
Cumulative distribution function value
 
PDF Graph
The file is very large. Browser slowdown may occur during loading and creation.
CDF Graph
The file is very large. Browser slowdown may occur during loading and creation.

Quantile function

\alpha-quantile Student is a number t_{\alpha,n} which conforms to F_n\left(t_{\alpha,n}\right) = 1- \alpha, where Fn - Student-t cumulative distribution function.
Inverse cumulative distribution function (quantile function) doesn't have a simple form; commonly, we use pre-calculated values from the tables published by Gosset and other researchers.

The following calculator approximates quantile function value with the aid of the jStat statistics package:

PLANETCALC, Student t-distribution quantile function

Student t-distribution quantile function

Digits after the decimal point: 2
Quantile
 

URL copiado para a área de transferência
PLANETCALC, Student t-distribution

Comentários