Cramer's Rule
This online calculator solves system of linear equations using Cramer's rule and shows detailed steps of the solution
This online calculator solves a system of linear equations using Cramer's rule and shows detailed steps of the solution - substituted matrixes and calculated determinants. Some theory is below the calculator, as usual.
You can use Cramer's rule for systems of linear equations where the number of equations is equal to the number of unknown variables, and the coefficient matrix's determinant is not zero (otherwise, the system of equations does not have a unique solution - either it has no solution at all or it has an infinite or parametric solution, and you have to use other methods to find it).
System of linear equations in matrix form looks like this
If system of linear equations satisfies abovementioned conditions, it has the only solution , which can be expressed using this formula
,
where – determinant formed by replacing the x-column values with the answer column (B) values, and
– coefficient matrix's determinant.
This is Cramer's rule. In fact, it is a handy way to solve just one of the variables without having to solve the whole system of equations.
Comentários