Sum of Partial Sums of Geometric Sequence

This online calculator calculates partial sums of geometric sequence and displays sum of partial sums.

Esta página existe graças aos esforços das seguintes pessoas:

Timur

Timur

Criado: 2020-02-17 09:48:48, Ultima atualização: 2021-02-18 12:41:34
Creative Commons Attribution/Share-Alike License 3.0 (Unported)

Este conteúdo é licenciado de acordo com a Licença Creative Commons de Atribuição/CompartilhaIgual 3.0 (Unported). Isso significa que você pode redistribuir ou modificar livremente este conteúdo sob as mesmas condições de licença e precisa atribuir ao autor original colocando um hyperlink para este trabalho no seu site. Além disto, favor não modificar qualquer referência ao trabalho original (caso houver) que estiverem contidas neste conteúdo.

The geometric sequence is a sequence of numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the common ratio. The formula to compute the next number in the sequence is

a_n=ra_{n-1}=a_1r^{n-1}

You can also sum numbers on the sequence up to a certain index n (which is called partial sum); the formula for the partial sum would be

S_p=\frac{a_1(r^n-1)}{r-1}

But you can also sum these partial sums as well. This is what the calculator below does. You enter the first term of the sequence, the common ratio, and the last index to compute, and the calculator displays the table with the following columns:

  • index i
  • i-th member of the sequence
  • i-th partial sum
  • i-th sum of partial sums

PLANETCALC, Sum of Partial Sums of Geometric Sequence

Sum of Partial Sums of Geometric Sequence

Digits after the decimal point: 2
The file is very large. Browser slowdown may occur during loading and creation.

URL copiado para a área de transferência
PLANETCALC, Sum of Partial Sums of Geometric Sequence

Comentários