Exibir resultados

Nome
Involute of an angle
Involute of an angle calculator and finding an angle by the given involute.
Involute of Circle
### Involute Calculation ### The following snippet calculates the \( x \) and \( y \) coordinates of an involute of a circle. Given a radius \( r \), an angle \( \theta \) in degrees, and an additional angle \( a \) in degrees, the code first converts these angles to radians and then computes the coordinates. \( x = r \times (\cos(\text{t+a}) + \text{t} \times \sin(\text{angle2})) \) \( y = r \times (\sin(\text{t+a}) - \text{t} \times \cos(\text{t+a})) \) The formula for calculating the x-coordinate is given by: x = r × (cos(t+a) + t × sin(t+a)) y = r × (sin(t+a) - t × cos(t+a))
Itens por página: