Método de Runge-Kutta
Essa calculadora online implementa o método de Runge-Kutta, que é um método número de quarta ordem para resolver equações diferenciais de primeiro grau com um determinado valor inicial.
Artigos que descrevem esta calculadora
Dígitos após o ponto decimal: 2
Equação diferencial
y′=y
Valor aproximado de y
2.72
O arquivo é muito grande; pode ocorrer lentidão do navegador durante o carregamento e a criação.
Aproximação
n | x{n} | y{n} | k1 | k2 | k3 | k4 | y{n+1} |
---|---|---|---|---|---|---|---|
0 | 0 | 1 | 0.1 | 0.11 | 0.11 | 0.11 | 1.11 |
1 | 0.1 | 1.11 | 0.11 | 0.12 | 0.12 | 0.12 | 1.22 |
2 | 0.2 | 1.22 | 0.12 | 0.13 | 0.13 | 0.13 | 1.35 |
3 | 0.30 | 1.35 | 0.13 | 0.14 | 0.14 | 0.15 | 1.49 |
4 | 0.4 | 1.49 | 0.15 | 0.16 | 0.16 | 0.16 | 1.65 |
5 | 0.5 | 1.65 | 0.16 | 0.17 | 0.17 | 0.18 | 1.82 |
6 | 0.6 | 1.82 | 0.18 | 0.19 | 0.19 | 0.20 | 2.01 |
7 | 0.7 | 2.01 | 0.20 | 0.21 | 0.21 | 0.22 | 2.23 |
8 | 0.80 | 2.23 | 0.22 | 0.23 | 0.23 | 0.25 | 2.46 |
9 | 0.90 | 2.46 | 0.25 | 0.26 | 0.26 | 0.27 | 2.72 |
10 | 1.00 | 2.72 | |||||
Calculadora utilizadas por esta calculadora
URL copiado para a área de transferência
Calculadoras similares
PLANETCALC, Método de Runge-Kutta
Comentários